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Viscosity is an essential property of fuels and a fundamental parameter in designing complex propulsion
and power systems. In this paper, molecular dynamics (MD) simulations are conducted to compute vis-
cosities of n-decane, n-undecane, and n-dodecane, Five force fields are compared by prediction of the vis-
cosity. The results show that the MD predictions of the viscosity of the selected n-alkane are in good
agreement with the reference data. In addition, the self-diffusion coefficient and radial distribution func-
tion of n-undecane are obtained from the MD simulations to better understand the viscosity character-
istics of a sub/supercritical region at the molecular level. The Stokes-Einstein model and the Rouse model
are employed to calculate the viscosity-temperature relationship of n-undecane under sub/supercritical
conditions. It is found that the predicted viscosity values are significantly underestimated by the two
models. This research offers reference for analyzing the thermophysical properties of N-alkanes and N-
alkane-based fuels.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Liquid alkane is an important fuel source [1–3] and a raw mate-
rial of the modern chemical industry [4–6]. The flow characteristics
of alkanes have been analyzed to determine the fundamental prop-
erties of petroleum and fuels since they are crucial for the heat
transfer design of regenerative cooling of scramjets. Alkanes are
commonly used propellants in propulsion and power systems
[7,8] and can be used as a power source and a coolant to absorb
heat from the air, reducing the temperature and consumption of
cooling air. Viscosity is a crucial parameter in the design of the heat
transfer and cooling system. However, it is challenging to deter-
mine viscosity experimentally and predict it accurately, especially
for complex fluids composed of many molecules and under high-
temperature and high-pressure conditions [9].

In recent years, molecular dynamics (MD) methods have
become an important aspect of studying the transport properties
of working fluids [10–14], molten salt [15–17] and refrigerant
[18] and have attracted increasing attention from researchers.
Payal et al. [19] used MD simulations to calculate the shear viscos-
ity of n-decane and n-hexadecane with united atom and all-atomic
force fields. The results showed that the calculated results of the
united atom force field were within 20%-30% of the experimental
value. Chen et al. [20] calculated the shear viscosity of n-
dodecane at temperature of 660.15 K and pressures of 3 MPa,
10 MPa and 30 MPa using MD simulations; the errors compared
with the experimental values are 20.23%, 13.03% and 22.31%,
respectively. Zhang et al. [21] used the COMPASS force field to
study the density and melting point of n-tetradecane, and their
results were in good agreement with experimental data. Lee
et al.[22] simulated the viscosity and self-diffusion coefficient of
four normal alkanes (C12, C20, C32, and C44); the simulation and
experimental results were in good agreement. Nicolas et al. [23]
calculated the surface tension of linear alkanes (n-hexane, n-
decane, and n-hexadecane) with different force fields, and the cal-
culation results obtained by the SKS force field differs from the
experimental results by about 15%. Kondratyuk et al. [24] adopted
MD simulations to calculate the diffusion coefficient of n-
triacontane, the average absolute deviation between the results
and the experimental data is 21.4%.

Many MD simulations studies were performed on the viscosity
of n-decane[19,23], dodecane[20,25], and other straight-chain
alkanes [22,24]. However, to the best of our knowledge, there are
no reports of MD studies on the viscosity characteristics of n-
undecane. In fact, N-decane, n-undecane, and n-dodecane have
been used as components in surrogate mixture for aviation
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Table 1
The characteristic of n-decane, n-undecane, and n-dodecane.

Molecular name Relative
molecular
weight

Critical
temperature/
K

Critical
pressure/
MPa

N-decane (C10H22) 142.28 617.7 2.103
N-undecane(C11H24) 156.31 638.8 1.990
N-dodecane(C12H26) 170.33 658.1 1.817

Fig. 1. (color online). Molecular structure of n-decane, n-undecane, and n-
dodecane.

Fig. 2. (color online). The simulation box consisted of 250 C11H24 molecular.
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kerosene under subcritical and supercritical conditions in MD
studies to analyze the properties of aviation kerosene in the regen-
eration cooling system and the engine injection system, thus it is
necessary to investigate the MD calculations of the viscosity char-
acteristics of n-undecane systematically.

The transport properties of a fluid can be obtained from equilib-
rium molecular dynamics (EMD) and non-equilibrium molecular
dynamics (NEMD) simulations. Kondratyuk et al. [26] concluded
that both methods give consistent results at pressure less than
100 MPa.

In this study, equilibrium MD (EMD) simulations with different
force field models are conducted to compare the viscosity of n-
decane, n-undecane, and n-dodecane and systematically analyze
the transport characteristics and local structures of n-undecane.
The rest of this article is organized as follows. Section 2 describes
the model construction and simulation method and details. Sec-
tion 3 presents the MD simulation results and the size effect and
comparisons of the force field models. Structural analyses and the-
oretical calculations are performed to understand the viscosity of
n-undecane at the molecular level. The numerical data and uncer-
tainty estimates are provided in the supplementary material to
allow readers to compare the obtained calculations.

2. Method

2.1. Green-Kubo formula

The Green-Kubo formula is used to calculate the viscosity of the
selected three alkanes. This formula relates viscosity to the stress-
stress normalized autocorrelation function (NACF). The NACF is
calculated in the three coordinate directions and averaged to
improve the accuracy of the results. The shear viscosity can be cal-
culated as follows [27]:

g ¼ V
kBT

Z1
0

X
a

X
b

Pab

!
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!
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where g is the shear viscosity, V and T denote the volume and the
temperature of the system, respectively. kB is the Boltzmann con-
stant, which is 1.3806504 � 10-23 J/K. a and b denote the x-, y-,
and z-directions in Cartesian coordinates (a – b). The angle bracket
< > denotes the average of the autocorrelation function.PabðtÞrepre-
sents the pressure tensor components in the a- and b-directions at
time t and is calculated as follows[27]:

PabðtÞ ¼ 1
V
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where N is the number of molecules,mi is the mass of a molecule
i. v iaand v ib are the velocity components of a molecule i in the a-
and b-directions, and r and f represent the displacement and force
between two molecules, respectively.

2.2. Force field models

In this paper, the following potential energy model is adopted:
[26]

E ¼ Ebond þ Eangle þ Edihedral þ Eimproper þ EVdw þ Ecoul ð3Þ
where Ebond is the bond interaction; Eangleis the angular interaction;
Edihedralis the interaction of dihedral angles;Eimproperis the interaction
of non-dihedral angles; EVdwand Ecoul are the van der Waals forces
and Coulomb forces between molecules, respectively. Five force
field models are compared in this study, including the AMBER
model [28], OPLS/AA model [29], L-OPLS model [30], COMPASS
model [31], and TraPPE-UA model [32]. The well-known Lorentz-
2

Berthelot mixing rule [27] is used to describe the interactions
between different atoms in the system [33].

2.3. Molecular simulation details

The relative molecular weight, critical temperature, critical
pressure and molecular structures of the selected alkanes are
shown in Table 1 and Fig. 1.

The EMD simulations are carried out using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) soft-
ware package [34]. A three-dimensional cubic simulation box is
used with periodic boundary conditions in all directions. A typical
simulation system for C11H24 (total molecular number N = 250) is
shown in Fig. 2.

The particle–particle/particle-mesh (PPPM) [35] is used to cal-
culate the long-range electrostatic interaction [36,37]. The cutoff
distance of the Lennard-Jones (LJ) interactions is 12 Å [20,26],



Fig. 3. (color online). The calculated NACF for five selected force fields.
Fig. 4. (color online). Viscosity obtained from the EMD simulation for n-decane
with different system sizes.
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and the time step is 0.4 fs. During the simulations, the system ini-
tially runs under an NPT ensemble to maintain the system pressure
and equilibrium for 1 ns at a given pressure. Subsequently, then an
NVT ensemble is applied to the system for 1 ns at a given temper-
ature. Finally, the viscosity is calculated in the NVT ensemble for
2 ns or longer for production.
2.4. Effect of system size in predicting viscosity

We conduct six independent simulations by changing initial
velocity to obtain a reliable value result of the viscosity. The viscos-
ity at a given temperature and pressure is estimated by averaging
the values of the six independent runs, and the error estimates are
obtained by calculating the standard error of the values. The NACF
is calculated to determine the correlation time s. We choose the
value of s when NACF has decayed completely and converged
almost to zero in the simulation. The EMD simulation strategy
for the viscosity calculation is similar to that in our previous stud-
ies [11,38]. Fig. 3 shows the NACF of n-decane for different force
field models. The NACF of n-decane is calculated at a pressure of
3 MPa and a temperature of 500 K. It is observed that the NACFs
for different force fields are similar and decay to zero relatively
quickly (within 3000 fs). This means correlation time 3000 fs is
enough for the convergence of NACF to zero for different force
fields , thus in our EMD simulations, the correlation time of the
EMD simulations are chosen as 3000 fs.

In order to test the influence of the number of molecules during
EMD simulations, five different numbers of molecules (100, 150,
200, 250, and 500 molecules) are studied at pressure of 3 MPa
and temperature of 500 K to determine the influence of the system
size, as shown in Fig. 4. The prediction results of the five simulation
box sizes are shown in Fig. 4. The green dots represent the simula-
tion results of the tested five simulated boxes, while the solid line
represents the averaged viscosity. These results conclude that size
of the system has a negligible effect on viscosity when the number
of molecules exceeds 100.
3. Results and discussion

3.1. The selection and comparison of the force field models

At present, the commonly used force field models for long-chain
alkanes include AMBER, OPLS/AA, L-OPLS, COMPASS and TraPPE-
3

UA models[20,21,24,25,38]. Therefore, we compare these five force
field models for the transport characteristics of alkanes. Here, the
viscosity of pure n-decane from the NIST database is used as a ref-
erence to obtain the accurate force field model [40–44]. In this
study, five different force field models are compared, and the vis-
cosity and mass density of n-decane at 3 MPa pressure and tem-
peratures from 350 K to 600 K are obtained from the EMD
simulations. The results are shown and compared with the NIST
data in Fig. 5(a) and 5(b).

The absolute relative error (ARE) between the MD simulation
results and the corresponding NIST data is calculated as follows:

ARE ¼ gSim � gNIST

gNIST

����
����� 100% ð4Þ

wheregSimand gNIST represent the MD and the NIST viscosities,
respectively. The AREs corresponding to the results in Fig. 5(a)
and (b) are shown in Figs. 6 and 7, respectively. To evaluate the pre-
diction accuracy, AREs of the force field models at all temperatures
tested are averaged. The COMPASS model exhibits the best perfor-
mance for predicting viscosity and mass density. The averaged AREs
of the COMPASS model for viscosities and densities at temperatures
from 350 K to 600 K are 13.88% and 3.77%, respectively. These
results are consistent with an earlier study made by Kondratyuk
et al. [39], who found that the COMPASS force field had the best per-
formance for predicting viscosity of 2-pyrrine-4-trimethylpentane
compare to OPLS-AA and L-OPLS force field models. Compared to
the AMBER, OPLS-AA and L-OPLS force fields models, the main dif-
ference is that all the cross terms between bonds, angles, dihedrals
are included in COMPASS force field model. TraPPE-UA model is a
typical UA model in which each CH2 and CH3 in alkane is simplified
by a pseudoatom. Thus we guess that the COMPASS model could
capture the viscosity behaviors of the alkane in more detail, thus
result in a good performance in prediction of the viscosities. This
suggests the COMPASS model as an accurate force field model to
predict viscosity of n-decane (C10H22), n-undecane (C11H24), and
n-dodecane (C12H26). Thus in the following simulations, only the
COMPASS model is used to predict the viscosity.

3.2. Simulation results of different alkanes

The viscosities and densities of n-decane (C10H22), n-undecane
(C11H24), and n-dodecane (C12H26) are calculated at pressure of
3 MPa and five selected temperatures using the EMD simulations.



Fig. 5. (color online). (a) The viscosity and (b) mass density as a function of the temperature obtained from the EMD simulations with five different force field models.

Fig. 6. (color online). AREs of the viscosity obtained from EMD simulations with five
different force field models at temperatures from 350 K to 600 K.

Fig. 7. (color online). AREs of the density obtained from EMD simulations with five
different force field models at temperatures from 350 K to 600 K.

Fig. 8. (color online). The mass density as a function of the temperature obtained
from EMD simulations with different alkanes.

Fig. 9. (color online). The viscosity as a function of the temperature obtained from
EMD simulations for three different alkanes.
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Fig. 10. (color online). Viscosity as a function of temperature obtained from EMD simulations of C11H24 at (a) Pressure of 2 MPa , and (b) Pressure of 5 MPa.

Fig. 11. (color online). RDF of different atom types for C11H24 at pressure of 2 MPa: (a) C(C11H24)-C(C11H24) and (b) C(C11H24)-H(C11H24).

Fig. 12. (color online). RDF of different atom types for C11H24 at pressure of 5 MPa: (a) C(C11H24)-C(C11H24) and (b) C(C11H24)-H(C11H24).
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Fig. 13. (color online). The MSD and the self-diffusion coefficient (D) of C11H24.

Fig. 14. (color online). The fitted viscosity-temperature curves obtained from the MD simulations, NIST data, S-E model, and Rouse model at (a) pressure of 2 MPa, and (b)
pressure of 5 MPa.
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It should be noted that the temperature values selected are the
same as those used in Refs. [45–47] for RP-3 aviation kerosene.
Thus, our results can be used in future investigations of aviation
kerosene substitutes. The simulation results are shown in Figs. 8
and 9, respectively, and are compared with the NIST data. The AREs
of the predicted densities and viscosities at all temperatures tested
are averaged for each alkane. The averaged AREs for predicting the
density of C10H22, C11H24, and C12H26 are 7.02%, 5.22% and 4.67%,
6

respectively, and the averaged ARE for predicting the viscosity
are 7.16%, 11.03% and 15.17%, respectively. The corresponding data
(including NIST data) are listed in Tables S6 and S8 in the supple-
mentary material. Figs. 8 and 9 show that the viscosity and density
decrease when temperatures increase at constant pressure.

A special effort is made to calculate viscosity of n-undecane
under sub/supercritical conditions, since no MD studies were con-
ducted to date. Fig. 10 describe the calculated viscosities of C11H24 ,



Table 3
The calculated the Dg=Tfor the C11H24.

P(MPa) T(K) Dg=Tðm2 � Pa � K�1Þ

2 MPa

394.91 0.288 � 10-14

467.32 0.268 � 10-14

519.29 0.241 � 10-14

572.94 0.241 � 10-14

609.91 0.242 � 10-14

649.27 0.222 � 10-14

Table 2
The fitting curves for pressure of 2 MPa and 5 MPa.

2 MPa 5 MPa

gMD 7081:48 � e�0:008T 3999:50 � e�0:007T

gNIST 8246:98 � e�0:008T 5957:70 � e�0:007T

gS�E 1145:70 � e�0:008T 970:20 � e�0:007T

gRouse 1922:31 � e�0:008T 1531:37 � e�0:007T
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which agree very well with the NIST data at pressures of 2 MPa and
5 MPa and the five selected temperatures. The trend of the viscos-
ity obtained from the simulation is the same as that of NIST, show-
ing a gradual decrease with an increase in the temperature. Under
subcritical states (2 MPa), the averaged AREs of C11H24 at temper-
atures tested is 6.82% (excluded the value near the critical point,
T = 638.8 K, P = 1.990 MPa). However, at T = 649.27 K and
P = 2 MPa, the ARE of the viscosity is relatively large (189.48%).
Large errors in predicted viscosity values near the critical point
have been observed in previous EMD simulation studies
[20,25,48]. In fact, it is still quite challenging to accurately predict
the thermophysical properties of fluids near or at the critical point
by using MD simulations, and further research efforts should be
made. Under supercritical conditions (5 MPa), the averaged ARE
at all temperatures tested is 10.28%. These results demonstrate
that the EMD simulations with the COMPASS force field model pro-
vide acceptable predictions for the viscosity of n-decane, n-
undecane, and n-dodecane at subcritical and supercritical states.

3.3. Structural analysis

The radial distribution function (RDF) g(r) represents the prob-
ability of finding another particle at a certain distance r from a ref-
erence particle. It is the ratio of the local density of the system at
the reference particle to the average density of the entire system,
reflecting the aggregation of molecules in the liquid and the inter-
nal structure of the liquid.

gabðrÞ ¼
1

4pqbr2

dNabðrÞ
dr

� �
ð5Þ

whereqb is the numerical density of the b particles.Nab is the num-
ber of b particles in a sphere with a particles in the center and
radius r. In general, the first peak of gðrÞ represents the aggregation
degree between the atoms or molecules in the first neighborhood.

The RDFs of n-undecane (C11H24) are shown in Figs. 11 and 12,
respectively, in the two states (sub/supercritical) (1) P = 2 MPa, T =
390–650 K and (2) P = 5 MPa, T = 390–650 K. It is observed that at
different temperatures, gðrÞC C11H24ð Þ�C C11H24ð Þhas three peaks located
at 3.2 Å, 3.93 Å, and 5.13 Å, respectively. The three peaks of
gðrÞC C11H24ð Þ�H C11H24ð Þ are observed at 2.8 Å, 3.5 Å, and 4.28 Å, respec-
tively. The local magnification of the first peak shows that the peak
values of gðrÞC C11H24ð Þ�C C11H24ð Þ and gðrÞC C11H24ð Þ�H C11H24ð Þdecrease grad-
ually with an increase in the temperature, indicating that the
aggregation degree of the C11H24 molecules decreases as the tem-
perature increases in the subcritical and supercritical states. The
amplitude of the first peaks of gðrÞC C11H24ð Þ�H C11H24ð Þis much higher
than those of gðrÞC C11H24ð Þ�C C11H24ð Þ at the same temperatures and
pressure. The RDF analysis shows that the aggregation degree
and the viscosity of the n-undecane molecules decrease with an
increase in the temperature.

3.4. Self-diffusion coefficient (D)

The self-diffusion coefficient is calculated to determine the vis-
cosity characteristics of n-undecane. The self-diffusion coefficient
is calculated using the time-dependent mean square displacement
(MSD) as follows:

D ¼ 1
6N

lim
t!1

d
dt

XN

i¼1

ri tð Þ � ri 0ð Þ½ �2
* +

ð6Þ

where riðtÞandrið0Þ are the positions of molecule i at time t and 0.

hPN
i¼1 riðtÞ � rið0Þ½ �2i is the MSD. The MSD of C11H24 is calculated

based on the EMD simulations for (1) P = 2 MPa, T = 350–650 K
and (2) P = 5 MPa, T = 350–650 K, see Fig. 13(a) and 13(c). The slope
7

of the MSD increases as the temperature increases. The self-
diffusion coefficient D is calculated based on the MSD value using
Eq. (6), as shown in Fig. 13(b) and 13(d). It is observed that the
self-diffusion coefficient D increases non-linearly with increasing
temperature.

3.5. Stokes-Einstein model and Rouse model

The Stokes-Einstein (S-E) model and the Rouse model have been
widely used for the theoretical calculation of fluid viscosities[49].
The S-E equation describes the relationship between the self-
diffusion coefficient D and the viscosity as follows:

g ¼ 2KBT
pCSEdD

ð7Þ

where d is the hydrodynamic diameter, and CSE is the S-E coefficient.
CSE = 6 for the stick boundary condition and CSE = 4 for the slip
boundary condition. The Rouse model [50] was initially used to esti-
mate the viscosity of polymers that fit the Gaussian chain. When the
long-chain molecule satisfies the formula of the Gaussian chain
<R2>=6<Rg> =nb2, R is the distance between the ends of the molec-
ular chain (Å); Rgis the radius of gyration (Å); b is the effective bond
length. The Rouse model is calculated as follows:

gðRgÞ ¼
qRTR2

g

6MD
ð8Þ

where gðRgÞis the viscosity of the system Pa.s; q is the density of the
system, kg/m3, R is the molar gas constant, 8.314 J/ (mol.K); T is the
temperature of the system, K,Rg is the radius of rotation, m; M is the
molar mass, kg/mol; D is the diffusion coefficient, m2/s.

The viscosity-temperature fitting curves obtained from the MD,
NIST, S-E model, and Rouse model are shown in Fig. 14. The fitting
curves for pressure of 2 MPa and 5 MPa as table2. It is observed
that the MD simulation values agree relatively well with the NIST
values. The values calculated by the S-E model and Rouse model
are similar, and the trends of the viscosity-temperature curves
are the same as those of the MD simulations and NIST data. How-
ever, both the S-E model and the Rouse model significantly under-
estimated the viscosity. In the calculation of the S-E model, it is
found that computed values of Dg=T are changed with tempera-
tures, as shown in Table 3. This means Dg=Tdoes not remain con-
stant, which indicates the breakdown of the S-E relationship
[51,52]. The underestimations of the Rouse model for the
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viscosities prediction of n-undecane viscosity are resulted from the
short chain of n-undecane which can not satisfy the Gaussian chain
[50,53]. These results indicate that the S-E model and Rouse model
are not suitable for calculating and predicting the viscosity-
temperature relationship of C11H24.
4. Conclusions

In this study, the viscosities of sub/supercritical n-decane, n-
undecane, and n-dodecane are systematically analyzed using the
EMD method. EMD simulation models for predicting the viscosities
are established, and five force field models (AMBER, OPLS/AA, L-
OPLS, COMPASS, and TraPPE-UA) are compared to determine the
optimum force field for viscosity prediction. It is found that the
COMPASS force field shows the best performance for viscosity pre-
diction, and the EMD simulation results are in agreement with the
NIST reference data. Additionally, the self-diffusion coefficient and
RDF of n-undecane are obtained from the MD simulations to better
understand the viscosity characteristics of the sub/supercritical
region at the molecular level. The results show that the aggregation
degree of the n-undecane molecules decreases with an increase in
the temperature, decreasing the viscosity. The S-E model and the
Rouse model are used to calculate the viscosity-temperature rela-
tionship of n-undecane under subcritical/supercritical conditions.
The viscosity values are significantly underestimated by these
two models. The research results can provide reference data for
analyzing the thermophysical properties of fuels based on n-
alkanes.
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